Arbeitspapier

Comparison of Bayesian and sample theory parametric and semiparametric binary response models

This study proposes a Bayesian semiparametric binary response model using Markov chain Monte Carlo algorithms since this Bayesian algorithm works when the maximum likelihood estimation fails. Implementing graphic processing unit computing improves the computation time because of its efficiency in estimating the optimal bandwidth of the kernel density. The study employs simulated data and Monte Carlo experiments to compare the performances of the parametric and semiparametric models. We use mean squared errors, receiver operating characteristic curves and marginal effects as model assessment criteria. Finally, we present an application to evaluate the consumer bankruptcy rates based on Canadian TransUnion data.

Sprache
Englisch

Erschienen in
Series: Bank of Canada Staff Working Paper ; No. 2022-31

Klassifikation
Wirtschaft
Semiparametric and Nonparametric Methods: General
Multiple or Simultaneous Equation Models: Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions
Model Construction and Estimation
Computational Techniques; Simulation Modeling
Thema
Econometric and statistical methods
Credit risk management

Ereignis
Geistige Schöpfung
(wer)
Shen, Xiangjin
Karibzhanov, Iskander
Tsurumi, Hiroki
Li, Shiliang
Ereignis
Veröffentlichung
(wer)
Bank of Canada
(wo)
Ottawa
(wann)
2022

DOI
doi:10.34989/swp-2022-31
Handle
Letzte Aktualisierung
20.09.2024, 08:22 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Shen, Xiangjin
  • Karibzhanov, Iskander
  • Tsurumi, Hiroki
  • Li, Shiliang
  • Bank of Canada

Entstanden

  • 2022

Ähnliche Objekte (12)