Arbeitspapier

Optimal data collection for randomized control trials

In a randomized control trial, the precision of an average treatment effect estimator and the power of the corresponding t-test can be improved either by collecting data on additional individuals, or by collecting additional covariates that predict the outcome variable. We propose the use of pre-experimental data such as other similar studies, a census, or a household survey, to inform the choice of both the sample size and the covariates to be collected. Our procedure seeks to minimize the resulting average treatment effect estimator's mean squared error or the corresponding t-test's power, subject to the researcher's budget constraint. We rely on a modification of an orthogonal greedy algorithm that is conceptually simple and easy to implement in the presence of a large number of potential covariates, and does not require any tuning parameters. In two empirical applications, we show that our procedure can lead to reductions of up to 58% in the costs of data collection, or improvements of the same magnitude in the precision of the treatment effect estimator.

Sprache
Englisch

Erschienen in
Series: cemmap working paper ; No. CWP15/17

Klassifikation
Wirtschaft
Large Data Sets: Modeling and Analysis
Methodology for Collecting, Estimating, and Organizing Microeconomic Data; Data Access
Thema
randomized control trials
big data
data collection
optimal survey design
orthogonal greedy algorithm
survey costs

Ereignis
Geistige Schöpfung
(wer)
Carneiro, Pedro M.
Lee, Sokbae
Wilhelm, Daniel
Ereignis
Veröffentlichung
(wer)
Centre for Microdata Methods and Practice (cemmap)
(wo)
London
(wann)
2017

DOI
doi:10.1920/wp.cem.2017.1517
Handle
Letzte Aktualisierung
20.09.2024, 08:24 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Carneiro, Pedro M.
  • Lee, Sokbae
  • Wilhelm, Daniel
  • Centre for Microdata Methods and Practice (cemmap)

Entstanden

  • 2017

Ähnliche Objekte (12)