Artikel

Volatility forecasting: Downside risk, jumps and leverage effect

We provide empirical evidence of volatility forecasting in relation to asymmetries present in the dynamics of both return and volatility processes. Using recently-developed methodologies to detect jumps from high frequency price data, we estimate the size of positive and negative jumps and propose a methodology to estimate the size of jumps in the quadratic variation. The leverage effect is separated into continuous and discontinuous effects, and past volatility is separated into "good" and "bad", as well as into continuous and discontinuous risks. Using a long history of the S & P500 price index, we find that the continuous leverage effect lasts about one week, while the discontinuous leverage effect disappears after one day. "Good" and "bad" continuous risks both characterize the volatility persistence, while "bad" jump risk is much more informative than "good" jump risk in forecasting future volatility. The volatility forecasting model proposed is able to capture many empirical stylized facts while still remaining parsimonious in terms of the number of parameters to be estimated.

Sprache
Englisch

Erschienen in
Journal: Econometrics ; ISSN: 2225-1146 ; Volume: 4 ; Year: 2016 ; Issue: 1 ; Pages: 1-24 ; Basel: MDPI

Klassifikation
Wirtschaft
Estimation: General
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Model Construction and Estimation
Forecasting Models; Simulation Methods
Financial Econometrics
Thema
high frequency data
realized volatility forecasting
downside risk
leverage effect

Ereignis
Geistige Schöpfung
(wer)
Audrino, Francesco
Hu, Yujia
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2016

DOI
doi:10.3390/econometrics4010008
Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Audrino, Francesco
  • Hu, Yujia
  • MDPI

Entstanden

  • 2016

Ähnliche Objekte (12)