Arbeitspapier

Pointwise adaptive estimation for quantile regression

A nonparametric procedure for quantile regression, or more generally nonparametric M-estimation, is proposed which is completely data-driven and adapts locally to the regularity of the regression function. This is achieved by considering in each point M-estimators over different local neighbourhoods and by a local model selection procedure based on sequential testing. Non-asymptotic risk bounds are obtained, which yield rate-optimality for large sample asymptotics under weak conditions. Simulations for different univariate median regression models show good finite sample properties, also in comparison to traditional methods. The approach is the basis for denoising CT scans in cancer research.

Sprache
Englisch

Erschienen in
Series: SFB 649 Discussion Paper ; No. 2011-029

Klassifikation
Wirtschaft
Semiparametric and Nonparametric Methods: General
Multiple or Simultaneous Equation Models: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
Thema
M-estimation
median regression
robust estimation
local model selection
unsupervised learning
local bandwidth selection
median filter
Lepski procedure
minimax rate
image denoising
Regression
Nichtparametrisches Verfahren
Schätztheorie
Theorie

Ereignis
Geistige Schöpfung
(wer)
Reiß, Markus
Rozenholc, Yves
Cuenod, Charles A.
Ereignis
Veröffentlichung
(wer)
Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
(wo)
Berlin
(wann)
2011

Handle
Letzte Aktualisierung
20.09.2024, 08:21 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Reiß, Markus
  • Rozenholc, Yves
  • Cuenod, Charles A.
  • Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk

Entstanden

  • 2011

Ähnliche Objekte (12)