Arbeitspapier

Simultaneous selection of variables and smoothing parameters by genetic algorithms

In additive models the problem of variable selection is strongly linked to the choice of the amount of smoothing used for components that represent metrical variables. Many software packages use separate toolsto solve the different tasks of variable selection and smoothing parameter choice. The combinationof these tools often leads to inappropriate results. In this paper we propose a simulataneous choice of variables and smoothing parameters based on genetic algorithms. Common genetic algorithms have to be modified since inclusion of variables and smoothing have to be coded separately but are linked in the search for optimal solutions. The basic tool for fitting the additive model is the penalized expansion in B-splines.

Language
Englisch

Bibliographic citation
Series: Discussion Paper ; No. 389

Subject
Genetic algorithm
Additive model
Variable selection
Penalized regression splines
B-splines
Improved AIC
BIC

Event
Geistige Schöpfung
(who)
Krause, Rüdiger
Tutz, Gerhard
Event
Veröffentlichung
(who)
Ludwig-Maximilians-Universität München, Sonderforschungsbereich 386 - Statistische Analyse diskreter Strukturen
(where)
München
(when)
2004

DOI
doi:10.5282/ubm/epub.1759
Handle
URN
urn:nbn:de:bvb:19-epub-1759-4
Last update
20.09.2024, 8:21 AM CEST

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Krause, Rüdiger
  • Tutz, Gerhard
  • Ludwig-Maximilians-Universität München, Sonderforschungsbereich 386 - Statistische Analyse diskreter Strukturen

Time of origin

  • 2004

Other Objects (12)