Arbeitspapier

The analysis and forecasting of ATP tennis matches using a high-dimensional dynamic model

We propose a basic high-dimensional dynamic model for tennis match results with time varying player-specific abilities for different court surface types. Our statistical model can be treated in a likelihood-based analysis and is capable of handling high-dimensional datasets while the number of parameters remains small. In particular, we analyze 17 years of tennis matches for a panel of over 500 players, which leads to more than 2000 dynamic strength levels. We find that time varying player-specific abilities for different court surfaces are of key importance for analyzing tennis matches. We further consider several other extensions including player-specific explanatory variables and the accountance of specific configurations for Grand Slam tournaments. The estimation results can be used to construct rankings of players for different court surface types. We finally show that our proposed model can also be effective in forecasting. We provide evidence that our model significantly outperforms existing models in the forecasting of tennis match results.

Sprache
Englisch

Erschienen in
Series: Tinbergen Institute Discussion Paper ; No. TI 2018-009/III

Klassifikation
Wirtschaft
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Forecasting Models; Simulation Methods
Thema
Sports statistics
Score-driven time series models
Rankings
Forecasting

Ereignis
Geistige Schöpfung
(wer)
Gorgi, P.
Koopman, Siem Jan
Lit, R.
Ereignis
Veröffentlichung
(wer)
Tinbergen Institute
(wo)
Amsterdam and Rotterdam
(wann)
2018

Handle
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Gorgi, P.
  • Koopman, Siem Jan
  • Lit, R.
  • Tinbergen Institute

Entstanden

  • 2018

Ähnliche Objekte (12)