Arbeitspapier

Improved inference in financial factor models

Conditional heteroskedasticity of the error terms is a common occurrence in financial factor models, such as the CAPM and Fama-French factor models. This feature necessitates the use of heteroskedasticity consistent (HC) standard errors to make valid inference for regression coefficients. In this paper, we show that using weighted least squares (WLS) or adaptive least squares (ALS) to estimate model parameters generally leads to smaller HC standard errors compared to ordinary least squares (OLS), which translates into improved inference in the form of shorter confidence intervals and more powerful hypothesis tests. In an extensive empirical analysis based on historical stock returns and commonly used factors, we find that conditional heteroskedasticity is pronounced and that WLS and ALS can dramatically shorten confidence intervals compared to OLS, especially during times of financial turmoil.

Sprache
Englisch

Erschienen in
Series: Working Paper ; No. 430

Klassifikation
Wirtschaft
Hypothesis Testing: General
Estimation: General
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Thema
CAPM
conditional heteroskedasticity
factor models
HC standard errors

Ereignis
Geistige Schöpfung
(wer)
Beck, Elliot
De Nard, Gianluca
Wolf, Michael
Ereignis
Veröffentlichung
(wer)
University of Zurich, Department of Economics
(wo)
Zurich
(wann)
2023

DOI
doi:10.5167/uzh-232341
Handle
Letzte Aktualisierung
20.09.2024, 08:22 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Beck, Elliot
  • De Nard, Gianluca
  • Wolf, Michael
  • University of Zurich, Department of Economics

Entstanden

  • 2023

Ähnliche Objekte (12)